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A NONLINEAR, SIX-DEGREE OF FREEDOM, 
PRECISION FORMATION CONTROL ALGORITHM, 

BASED ON RESTRICTED THREE BODY DYNAMICS 

Richard J. Luquette* and Robert M. Sanneri 

Precision Formation Flying is an enabling technology for a variety of 
proposed space-based observatories, including the Micro- Arcsecond X-ray 
Imaging Mission (MAXIM), the associated MAXIM pathfinder mission, 
and the Stellar Imager. An essential element of the technology is the 
control algorithm. This paper discusses the development of a nonlinear, 
six-degree of freedom (6DOF) control algorithm for maintaining the 
relative position and attitude of a spacecraft within a formation. The 
translation dynamics are based on the equations of motion for the 
restricted three body problem. The control law guarantees the tracking 
error convergences to zero, based on a Lyapunov analysis. The simulation, 
modelled after the MAXIM Pathfinder mission, maintains the relative 
position and attitude of a Follower spacecraft with respect to  a Leader 
spacecraft, stationed near the L2 libration point in the Sun-Earth system. 

INTRODUCTION 

Distributed Spacecraft Systems (DSS) represent the future architecture for 
constructing very large, space-based observatories.' Widely varying science goals lead to  an equal 
assortment of design concepts and requirements. Stellar Imager,2 the Micro-Arcsecond X-ray Imaging 
Mission (MAXIM) ,3 and the associated MAXIM Pathfinder, represent a subset of missions requiring 
precision formation flying. The spacecraft are expected to be stationed at  the Earth-Sun L2 point, 
or in a Earth drift-away orbit about the Sun. In both cases the Restricted Three Body Problem 
(RTBP) provides a natural context for design arid analysis of the formation control law. Mission 
success will depend on the development of many supporting technologies. 

One essential technology element is the algorithm for both relative position and attitude control. 
Traditionally, spacecraft control algorithms treat the orbital dynamics and attitude dynamics as 
uncoupled. However, precision formation flying requires continuous low thrust t o  achieve a sub- 
millimeter mission design criteria. Continuous thruster action introduces a coupling action between 
orbital trajectory control and attitude control. With proper design the thrusters can serve as 
actuators to  simultaneously control the spacecraft orbit and attitude trajectories. Implementation 
of this control strategy requires a six-degree of freedom (6DOF) control law. This paper proposes a 
6DOF nonlinear control law to solve this problem building on previous work of the authors, which 
focused on the 3DOF, orbital control p r ~ b l e m . ~ , ~  
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Figure 1: Two Spacecraft Formation Orbiting in the Earth/Moon - Sun Rotating Frame 

Refer to the Notation section at the end of this paper for definitions of mathematical symbols not 
provided as part of the discussion. 

PROBLEM STATEMENT 

Consider a two spacecraft formation stationed in the vicinity of L2 in the EarthfMoon - Sun 
rotating frame, as shown in Figure 1. The spacecraft designations are Leader and Follower. The 
Earth-Moon system is modelled as a combined mass located at the system center of mass. The 
position and relative motion of the Earth/Moon system and the Sun define the rotating frame. 
The Leader maintains a planned ballistic trajectory with periodic station-keeping maneuvers, and 
a predetermined attitude trajectory. Attitude control on the Leader is accomplished with reaction 
wheels to avoid perturbing its orbit trajectory. The Follower tracks a specified separation trajectory, 
xd, relative to the Leader, and a predetermined attitude trajectory, qd. Measurement data provides 
the relative position and velocity between the two spacecraft. Each spacecraft is equipped to measure 
attitude, referenced to  an inertial coordinate frame. The Follower is equipped with thrusters to serve 
as actuators for both translation and attitude maneuvers. 
The problem: 

0 Design a control algorithm for the Follower to track a desired trajectory, xd and qd. 

0 Demonstrate the tracking error approaches zero, at least asymptotically. 

0 Characterize the stability properties, i.e. local versus global stability. 

SYSTEM DYNAMICS AND KINEMATICS 

This section provides a brief review of both the dynamics and kinematics of translation and rotation 
for a spacecraft. 

Translation 

The following analysis is extracted from Refs. 4 and 5. Given a spacecraft stationed near the 
Sun-Earth/Moon L2 point, the principle environmental forces are gravity and solar pressure. These 



forces, coinbined with thruster action: drive the spacecraft dymrnics. The principal gravitat,ional 
sources are the Sun and the Earth-Xdoon systein. In coixparison, the mutual gravitational int,eract.ioii 
between the spacecraft, is insignificant. Based on the reference vect,ors shown in Figure 1, the Leader 
dynamics (per unit mass) are given by Eq. (1). The Follower dynamics per unit, mass are given by 
Eq. (2). 

The relative motion of the Follower with respect to the Leader is computed as the difference of Eqs. 
(I) and (2). 

.. .. 
X = rp - r L  

The terms are arranged to resolve the main gravitational forces into three components along the 
vectors, x, rEL , and r,, . The typical formation under consideration represents a space-based 
observatory. Therefore, the desired, xd, is assumed constant in magnitude and direction with respect 
to inertial space. On the short time scale for control the spacecraft position will remain essentially 
fixed in the rotating frame, Figure 1. Therefore, the gravitational component along x, remains 
constant in inertial space, except during reorientation. The other components remain constant in 
the rotating frame of the RTBP. Theoretically, the magnitude and direction of these terms could be 
computed based on the position of the spacecraft relative to the Earth, Sun and other gravitational 
bodies, allowing direct compensation for the gravitational gradient between spacecraft in the control 
design. However, in practice precise position data is not available for spacecraft stationed at L2, or a 
heliocentric drift away orbit. Therefore, knowledge of the magnitude and direction of these terms is 
considered unknown. So, with Q1 and 0 2  representing the unknown constant vectors in the inertial 
and RTBP frames, respectively, Eq. (3) can be expressed as: 

As a further simplification, the perturbing forces due to solar pressure and other gravitational 
sources are also modelled as unknown, constant components, one inertially fixed, the other fixed in 
the RTBP frame. The assumption is reasonable. Solar pressure acts along the spacecraft to sun 
line, whjch is fixed in the RTBP rotating frame. As with the Sun and EarthjMoon, the contribution 
of other gravitational sources can be resolved into two components, one in each of the inertial and 
RTBP frames. These components also remain essentially constant under the stated assumptions. 
Therefore, the terms, Af.,,., and AfPmrt, are absorbed into the terms, 0 1  and 9 2 .  Then, Eq. (4) 
is rewritten as: 



Rotation 

The equation for rotational dynamics of a rigid spacecraft without reaction wheels is given by: 

H, * & - S([H, * w ] )  * w = f ( 6 )  

where: S([H, * w ] )  is the skew symmetric matrix formed by the vector, [H, * w ] .  

In general, the rotational kinematics are given by: 

CONTROL LAW DESIGN 

The proposed control law design combines algorithms for control of translation from Ref. 5, and 
rotation from Ref. 6. 

Translation 

The control design is based on nonlinear adaptive theory developed for robotic applications.' Under 
the assumption that Eq. (5) represents the relative dynamics, Ref. 4 presents an adaptive control 
strategy that provides globally stable, perfect tracking of a desired smooth trajectory for a spacecraft 
with a known mass. The analysis assumes perfect knowledge of the motion of the Follower with 
respect to  the Leader. Terms used in the following discussion are defined as: 

mF - Mass of Follower 
mF - Estimated Mass of Follower 
x d  - Desired spacecraft separation vector 

6, - Estimate value of 0, 

jc' 

s, 
a 
K, - Design parameter, symmetric, uniformly positive definite matrix 
AT - Design parameter, constant, symmetric, positive definite matrix 

6, - (GT - 0,) 
- (Xd-n, * (x - xd)), reference velocity 
- (k - k d )  + A, * (x - x d )  = k - k', error metric 
- Design parameter, adaptive gain, positive constant 

The proposed control law for differential thrust per unit mass is: 

For a spacecraft of known mass, Eqs. (5) and (8) combine to form the expression for the tracking 
error dynamics: 



x = - - I ~  * o1 - A ~ ,  * o2 +xr + rT * 0, - K, * ST 
s, = rT * (0, - - 0,) - K ,  *sT (10) 
s, = rT * 0, - K, * ST 

The error dynamics, Eq. (lo), combined with the adaptive rule, Eq. (9), results in exponentially 
stability of the tracking error. The proof is provided by Ref. 4. 
With the additional restriction that the desired acceleration, x d  = 0, ref. 5 extends this result, 
demonstrating that the above algorithm is still valid for a spacecraft with uncertain mass. For a 
spacecraft of unknown/estimated mass, Eqs. (5) and (8) combine to form the expression for the 
tracking error dynamics: 

Where the error metric is redefined as, s I T  = ( k - kd) + u * A * ( x - xd) ,  with u = %. Further, 

define 6, = u * 6, - 0,. Then Eq. (11) is rewritten as: 
m F  

Under the stated assumption, x d  = 0, the error dynamics are simplified as: 

6; = r T * Q T - K T * ~ ;  (13) 

Coupled with the following modified adaptive rule the equations assume the same form as Eqs. (8) 
and (9). 

Exponential stability of the tracking error is directly inferred from the Lyapunov proof presented in 
Ref. 4. Also, 6, + 0, which implies 0, --f $e,, versus 0,. 
As a final note, the modified adaptive rule and error metric, s;, facilitate the proof of exponential 
stability. As the value of u is unknown, it cannot be directly factored into the algorithm design. 
However, the control law provided in Eq. (8), combined with the adaptive rule, Eq. (9), are sufficient 
to generate the desired resuit. Effectively, the term, (u * A), is treated as a single design parameter 
for defining sk . 

Rotation 

Ref. 6 presents a passivity-based attitude control algorithm for a rigid spacecraft. The formulation 
for a spacecraft with gas jet actuators is applied to this design. Terms used in the following discussion 
are defined as: 

wd 

qd = [Ed 

6 
W r  

S R  
KR 
4 3  

- Desired Spacecraft Angular Rate 
- Desired Spacecraft Attitude Quaternion 
- [gqlT = qmqi', error quaternion 
- (wd - A, * E ) ,  reference angular rate 
- (w - w r ) ,  angular rate error metric 
- Design parameter, symmetric, uniformly positive definite matrix 
- Design parameter, constant, symmetric, positive definite matrix 



Based on the rotational dynamics, Eq. (6), the control law is defined as: 

(15) T = H, * L j r  - S([H, * w ] )  * w r  - K, *sR 

Implementation of this algorithm requires knowledge of the spacecraft moment of inertia, H,, 
which is limited by measurement errors and mass property variations. Therefore, an adaptive 
control strategy, designed to estimate the mass properties, is preferred. This is accomplished by 
reformulating Eq. (15) as: 

Where: 

r,(q, w ,  w,, * 0, = H, * ( j r  - s([H, * w ] )  * wr (17) 

The matrix, I?, (4, w ,  w,, Gr), contains the known rigid body dynamics and kinematics. The vector, 
OR, contains the mass properties, considered constant and unknown. (16), 
combined with the adaptive rule, Eq. (18), provides global convergence of the tracking error to 
zero.6 

The control, Eq. 

Combined 

Simultaneous implementation of the above control algorithms requires coordinated thruster action to 
generate the desired translation and rotation control inputs. The relationship between the thruster 
output and the net control inputs is expressed as: 

where: 

bU 
R(q) - Transformation from inertial to body coordinates 
B - Control sensitivity matrix 
F 

- Combined, translation and rotation control in body coordinates 

T 
- Thruster output, [fl, fi,  ..., fn] 

With proper placement of the thrusters the control sensitivity matrix, B, will have a pseudo inverse. 
Then, the thruster commands are computed as: 

This implementation for computing thruster commands generates the desired thrust and torque for 
translation and rotation control. Therefore, the convergence and stability properties of the previously 
discussed algorithms are retained, and further analysis/proof is not required. 



SIMULATION 
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The performance of the control design is demonstrated through a simulation based on the MAXIM 
Pathfinder mission. The spacecraft are initialized in an orbit about the L2 point in the Earth/Moon- 
Sun system. The leader spacecraft remains on a ballistic trajectory, u ~ ~ ~ ~ , ~ , ~  = 0.  The scenario 
starts with the Follower at  the same position and attitude as the Leader, i.e. initial deployment. 
The Follower tracks a command trajectory to a 200 km separation, Fig. 2, while simultaneously 
tracking a 90 degree slew maneuver, Fig. 3. The simulation is implemented in MATLAB@. 

The successful controller performance is evidenced by the tracking error, shown in Figs. 4 and 5. 
The controller gains are not designed for optimal performance. 
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Figure 2: Desired Relative Separation between Follower and Leader 
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Figure 3: Euler Angle of Desired Attitude, qd, of Follower with Respect to Inertial 
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Figure 4: Relative Position Trajectory Tracking Error, (x - xd) 
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Figure 5: Euler Angle of Quaternion 'Prajectory Tracking Error, (q@ si1) 

CONCLUSIONS AND FUTURE WORK 

This paper presents a successful adaptive, nonlinear 6DOF formation control strategy for spacecraft 
experiencing slow changes in environmental forces, typical for an orbit about L2. Adaptation is employed 
to estimate the spacecraft mass properties. Stellar Imager, MAXIM and MAXIM Pathfinder are typical 
missions with potential for employing this strategy. 
The development assumes the availability of perfect measurement data. Further thruster performance is 
ideal. Future work will consider issues associated with corrupted measurement data, and issues associated 
with thruster alignment and performance, and coupled stability issues with an observer/estimator. 



NOTATION 

Symbols for additional terms are defined in the following table. All vectors are resolved in inertial 
coordinates, unless otherwise stated. 

fdrr 

fPd 

Utb“.t 

I3 - Identity Matrix, 3x3 
Ari 
Pem 

Ps 
H, 
W - Spacecraft Angular Rate 
r 
q = [E qlT - Spacecraft Attitude Quaternion 
E 

rl 
S ( V )  

- Force exerted on spacecraft due to solar pressure 
- Force exerted on spacecraft due to other perturbations 
- Force exerted on spacecraft due to thrusters 

- Rotation Matrix from Inertial to Earth/Moon - Sun Rotating Frame 
- Gravitational parameter of the Earth/Moon 
- Gravitational parameter of the Sun 
- Spacecraft Moment of Inertia 

- External Torque on Spacecraft 

- Vector Component of Spacecraft Attitude Quaternion 
- Scalar Component of Spacecraft Attitude Quaternion 
- Skew-symmetric matrix of vector,v. S ( w )  * w, equivalent to cross product, w x w. 

. 
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